Preliminary Results of Laser Ranging to Un-cooperative Targets at Shanghai SLR Station

Yang FuMin, Zhang ZhongPing, Chen JuPing, Chen WanZhen, Wu ZhiBo, Zhang HaiFeng

Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China

Ivan Prochazka

Czech Technical University in Prague, Czech Republic

Email: Yangfm@shao.ac.cn

Goals

- Investigation of the key techniques of un-cooperative target laser ranging
- Experimental laser ranging to
 - un-cooperative targets

Estimate of the returned signal strength

The returned signal strength of laser ranging on uncooperative targets can be estimated by:

$$n_0 = \frac{\lambda \eta_q}{hc} \times \frac{E_t A_r \rho S \cos(\theta)}{\pi \theta_t^2 R^4} \times T^2 \times K_t \times K_r \times \alpha$$

Where

n₀: Average number of photoelectrons received by detector

λ: Wavelength of laser, 532nm

 η_{α} : Quantum efficiency of the C-SPAD detector, 0.2

h: Planck constant, 6.624×10⁻³⁴ J·S

c: Light speed, 2.998×108 m/s

E_t: Energy of laser pulse, 2J

Ar: Effective area of receive telescope, 0.245m²

ρ: Reflectivity of the target's surface

r: Equivalent radius of the target, 1m

 $cos(\theta)$: Suppose the targets are spherical, $cos(\theta)=1$

 θ_t : Divergency of laser beam from telescope, 12 arcsec

R: Range of the targets, 800Km

T: Atmospheric transmission, $T^2=0.6$

Kt: Eff. of transmitting optics, 0.60

Kr: Eff. of receiving optics, 0.60

 α : Attenuation factor, 13dB

We have,

n₀=0.198 (Photoelectron)

The probability of detection can be estimated:

$$P = 1 - e^{-n_0} = 1 - e^{-0.198} = 0.18$$

So we can get 18 return signals in 5 second by the laser with 20Hz repetition.

1: HR mirror 2: E-Q Switch 3: Polarizer 4: YAG rod 5: Output mirror 6: Isolator 7: Compensator

8: Reflect mirror 9: Frequency doubler 10: Optical coupler 11: Imaging lens

Diagram of the 40W laser (2J, 20Hz, 10ns)

Some results of un-cooperative target laser ranging at the Shanghai SLR station

Returns from the discard US rocket (ID 2007-006G) on July 17, 2008

Returns from the discard US rocket (ID 2007-006G) on July 18, 2008

Ranging data of ID 1987-38B on July 7, 2008

Ranging data of ID 2007-006G on July 17, 2008

Ranging data of ID 2007-006G on July 18, 2008

Statistics of returns (5-second bin) on July 7, 2008

 12-14 returns in 5 seconds were obtained when tracking well, and roughly coincide with the estimation of the returns signal strength.

Future Plan

- Upgrading of the prediction of the targets (now the error of range prediction is about 1km, too difficult to obtain the returns)
- Automatically scanning of range gate and rapidly identify the return signals
- To track smaller targets and assessing the ranging capability of the system

Summary

- The laser returns from the un-cooperative targets have been obtained at the Shanghai SLR Station in July 2008.
- These targets are the discard Soviet and US rockets with the ID 1987-38B and 2007-006G respectively.
- The return signals from the targets with the range of 900km were quite strong.

Thank You!